Have a Question?
Phone: +1 (888) 4279486
+1 (312) 2573777
Contact Us
LAG
Returns an array of cells for the backshifted/lagged time series.
Syntax
LAG(X, Order, K)
X
is the univariate time series data (a one dimensional array of cells (e.g. rows or columns)).
Order
is the time order of the data series (i.e. whether the first data point corresponds to the earliest or latest date (earliest date=1 (default), latest date=0)).
Order  Description 

1  ascending (the first data point corresponds to the earliest date) (default) 
0  descending (the first data point corresponds to the latest date) 
K
is the Excel lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.). If missing, the default value of one is assumed.
Remarks
 The time series is homogeneous or equally spaced.
 The time series may include missing values (e.g. #N/A) at either end.
 k (i.e. Excel lag order) should be nonnegative and less than the size of the time series.
 The lagged time series is:
Where:
 is the lagged time series.
 is the input time series.
 is the Excel lag operator.

is the Excel lag order.
Examples
Example 1:
A  B  C  D  E  

1  Date  Data  
2  January 10, 2008  0.3000  #N/A  #N/A  #N/A 
3  January 11, 2008  1.28  0.30  #N/A  #N/A 
4  January 12, 2008  0.24  1.28  0.30  0.30 
5  January 13, 2008  1.28  0.24  1.28  1.28 
6  January 14, 2008  1.20  1.28  0.24  0.24 
7  January 15, 2008  1.73  1.20  1.28  1.28 
8  January 16, 2008  2.18  1.73  1.20  1.20 
9  January 17, 2008  0.23  2.18  1.73  1.73 
10  January 18, 2008  1.10  0.23  2.18  2.18 
11  January 19, 2008  1.09  1.10  0.23  0.23 
12  January 20, 2008  0.69  1.09  1.10  1.10 
13  January 21, 2008  1.69  0.69  1.09  1.09 
14  January 22, 2008  1.85  1.69  0.69  0.69 
15  January 23, 2008  0.98  1.85  1.69  1.69 
16  January 24, 2008  0.77  0.98  1.85  1.85 
17  January 25, 2008  0.30  0.77  0.98  0.98 
18  January 26, 2008  1.28  0.30  0.77  0.77 
19  January 27, 2008  0.24  1.28  0.30  0.30 
20  January 28, 2008  1.28  0.24  1.28  1.28 
21  January 29, 2008  1.20  1.28  0.24  0.24 
22  January 30, 2008  1.73  1.20  1.28  1.28 
23  January 31, 2008  2.18  1.73  1.20  1.20 
24  February 1, 2008  0.23  2.18  1.73  1.73 
25  February 2, 2008  1.10  0.23  2.18  2.18 
26  February 3, 2008  1.09  1.10  0.23  0.23 
27  February 4, 2008  0.69  1.09  1.10  1.10 
28  February 5, 2008  1.69  0.69  1.09  1.09 
29  February 6, 2008  1.85  1.69  0.69  0.69 
30  February 7, 2008  0.98  1.85  1.69  1.69 
Examples
References
 Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0691042896
 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0471690740